

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/pdfkit/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/pdfkit/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

PDFKit

Create PDFs using plain old HTML+CSS. Uses wkhtmltopdf [http://github.com/antialize/wkhtmltopdf] on the back-end which renders HTML using Webkit.

Install

PDFKit

gem install pdfkit

wkhtmltopdf

	Install by hand (recommended):

https://github.com/pdfkit/pdfkit/wiki/Installing-WKHTMLTOPDF

	Try using the wkhtmltopdf-binary gem (mac + linux i386)

gem install wkhtmltopdf-binary

Note: The automated installer has been removed.

Usage

PDFKit.new takes the HTML and any options for wkhtmltopdf
run `wkhtmltopdf --extended-help` for a full list of options
kit = PDFKit.new(html, :page_size => 'Letter')
kit.stylesheets << '/path/to/css/file'

Get an inline PDF
pdf = kit.to_pdf

Save the PDF to a file
file = kit.to_file('/path/to/save/pdf')

PDFKit.new can optionally accept a URL or a File.
Stylesheets can not be added when source is provided as a URL of File.
kit = PDFKit.new('http://google.com')
kit = PDFKit.new(File.new('/path/to/html'))

Add any kind of option through meta tags
PDFKit.new('<html><head><meta name="pdfkit-page_size" content="Letter"')
PDFKit.new('<html><head><meta name="pdfkit-cookie cookie_name1" content="cookie_value1"')
PDFKit.new('<html><head><meta name="pdfkit-cookie cookie_name2" content="cookie_value2"')

Resolving relative URLs and protocols

If the source HTML has relative URLs (/images/cat.png) or
protocols [https://en.wikipedia.org/wiki/Uniform_Resource_Locator#prurl]
(//example.com/site.css) that need to be resolved, you can pass :root_url
and :protocol options to PDFKit:

PDFKit.new(html, root_url: 'http://mysite.com/').to_file
or:
PDFKit.new(html, protocol: 'https').to_file

Using cookies in scraping

If you want to pass a cookie to cookie to pdfkit to scrape a website, you can
pass it in a hash:

kit = PDFKit.new(url, cookie: {cookie_name: :cookie_value})
kit = PDFKit.new(url, [:cookie, :cookie_name1] => :cookie_val1, [:cookie, :cookie_name2] => :cookie_val2)

Configuration

If you’re on Windows or you would like to use a specific wkhtmltopdf you installed, you will need to tell PDFKit where the binary is. PDFKit will try to intelligently guess at the location of wkhtmltopdf by running the command which wkhtmltopdf. If you are on Windows, want to point PDFKit to a different binary, or are having trouble with getting PDFKit to find your binary, please manually configure the wkhtmltopdf location. You can configure PDFKit like so:

config/initializers/pdfkit.rb
PDFKit.configure do |config|
 config.wkhtmltopdf = '/path/to/wkhtmltopdf'
 config.default_options = {
 :page_size => 'Legal',
 :print_media_type => true
 }
 # Use only if your external hostname is unavailable on the server.
 config.root_url = "http://localhost"
 config.protocol = 'http'
 config.verbose = false
end

Middleware

PDFKit comes with a middleware that allows users to get a PDF view of any page on your site by appending .pdf to the URL.

Middleware Setup

Non-Rails Rack apps

in config.ru
require 'pdfkit'
use PDFKit::Middleware

Rails apps

in application.rb(Rails3) or environment.rb(Rails2)
require 'pdfkit'
config.middleware.use PDFKit::Middleware

With PDFKit options

options will be passed to PDFKit.new
config.middleware.use PDFKit::Middleware, :print_media_type => true

With conditions to limit routes that can be generated in pdf

conditions can be regexps (either one or an array)
config.middleware.use PDFKit::Middleware, {}, :only => %r[^/public]
config.middleware.use PDFKit::Middleware, {}, :only => [%r[^/invoice], %r[^/public]]

conditions can be strings (either one or an array)
config.middleware.use PDFKit::Middleware, {}, :only => '/public'
config.middleware.use PDFKit::Middleware, {}, :only => ['/invoice', '/public']

conditions can be regexps (either one or an array)
config.middleware.use PDFKit::Middleware, {}, :except => [%r[^/prawn], %r[^/secret]]

conditions can be strings (either one or an array)
config.middleware.use PDFKit::Middleware, {}, :except => ['/secret']

Saving the generated .pdf to disk

Setting the PDFKit-save-pdf header will cause PDFKit to write the generated .pdf to the file indicated by the value of the header.

For example:

headers['PDFKit-save-pdf'] = 'path/to/saved.pdf'

Will cause the .pdf to be saved to path/to/saved.pdf in addition to being sent back to the client. If the path is not writable/non-existant the write will fail silently. The PDFKit-save-pdf header is never sent back to the client.

Troubleshooting

	Single thread issue: In development environments it is common to run a
single server process. This can cause issues when rendering your pdf
requires wkhtmltopdf to hit your server again (for images, js, css).
This is because the resource requests will get blocked by the initial
request and the initial request will be waiting on the resource
requests causing a deadlock.

This is usually not an issue in a production environment. To get
around this issue you may want to run a server with multiple workers
like Passenger or try to embed your resources within your HTML to
avoid extra HTTP requests.

Example solution (rails / bundler), add unicorn to the development
group in your Gemfile gem 'unicorn' then run bundle. Next, add a
file config/unicorn.conf with

 worker_processes 3

Then to run the app unicorn_rails -c config/unicorn.conf (from rails_root)

	Resources aren’t included in the PDF: Images, CSS, or JavaScript
does not seem to be downloading correctly in the PDF. This is due
to the fact that wkhtmltopdf does not know where to find those files.
Make sure you are using absolute paths (start with forward slash) to
your resources. If you are using PDFKit to generate PDFs from a raw
HTML source make sure you use complete paths (either file paths or
urls including the domain). In restrictive server environments the
root_url configuration may be what you are looking for change your
asset host.

	Mangled output in the browser: Be sure that your HTTP response
headers specify “Content-Type: application/pdf”

Note on Patches/Pull Requests

	Fork the project.

	Setup your development environment with: gem install bundler; bundle install

	Make your feature addition or bug fix.

	Add tests for it. This is important so I don’t break it in a
future version unintentionally.

	Commit, do not mess with rakefile, version, or history.
(if you want to have your own version, that is fine but bump version in a commit by itself I can ignore when I pull)

	Send me a pull request. Bonus points for topic branches.

Copyright

Copyright (c) 2010 Jared Pace. See LICENSE for details.

2015-08-26

	Bump to 0.8.2

	Fix URI errors for users using PDFKit in contexts with ‘uri’ not
already required (thanks christhekeele)

2015-08-20

	Bump to 0.8.1

	Fix shell escaping issues for Windows (thanks muness)

	Fix shell escaping issues for URLs, introduced in 0.5.3 release

2015-07-08

	Bump to 0.8.0

	Support Cover and Table Of Contents options (thanks @nicpillinger)

	Fix repeatings keys with string values

	Fix caching bug (thanks @jocranford)

	Fix munging of relative paths (thanks @jocranford)

	Fix bug where nil values did not stay nil (thanks @tylerITP)

2015-05-06

	Bump to 0.7.0

	Fix issue #230 where PDFKit called bundle exec without a Gemfile

	Fix issue #183 where PDFKit broke the path to wkhtmltopdf.exe by escaping
spaces in paths

	Improve performance by not storing the PDF in memory if a path is
provided. Thanks @mikefarah

	Middleware now infers HTTP or HTTPS from environment for relative URLs

2014-04-20

	Bump to 0.6.2

	There was a bug where parsing meta tags would include the option name
causing an invalid command to be generated. This was fixed in #229 after
being reported by Frank Oxener.

2014-02-18

	Bump to 0.6.0

	Added ability to run wkhtmltopdf without --quiet

	Now handles repeatable options as both config parameters and meta tag
options

	Fix status code 2 being treated as failure

	Escape \X in styesheets

	Allow controllers to set PDFKit-save-pdf

	Fix Middleware not respecting subdomains in path

2013-06-12

	Bump to 0.5.4

	Fix broken page numbers (https://github.com/pdfkit/pdfkit/pull/181)

2013-02-21

	Bump to 0.5.3

	Fix security vulnerability due to unsanitized strings being passed to wkhtmltopdf (https://github.com/pdfkit/pdfkit/issues/164)

2011-07-02

	Bump to 0.5.2

	Fix of dealing with ActiveSupport::SafeBuffer >= 3.0.8.

	Fix for meta tag options getting dropped in REE 1.8.7.

	Fix on bundler environment detection.

2011-06-17

	Bump to 0.5.1

	Fix for response body coming through as an array.

	Added root_url configuration for setup where a host my not know its own name.

	Awareness of Bundler when looking for the wkhtmltopdf executable.

	Fix for file data getting truncated in Ruby 1.8.6

	Fix for 0.5.0 release getting stuck rendering all requests as PDFs.

	More robust meta tag detection.

2010-12-27

	Bump to 0.5.0

	Switched to popen - adds support for JRuby and Windows

	Pulled in support for pdf rendering conditions in middleware via Rémy Coutable

	Use which to try and determine path to wkhtmltopdf

	Removed wkhtmltopdf auto installer

	Changed :disable_smart_shrinking to false for default options.

	Added History.md

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/minus.png

_static/comment-close.png

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

